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Metal-insulator transition in graphene induced by circularly polarized photons
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Exact stationary solutions of the electron-photon Dirac equation are obtained to describe the strong interac-
tion between massless Dirac fermions in graphene and circularly polarized photons. It follows from them that
this interaction forms bound electron-photon states which should be considered as a kind of charged quasipar-
ticles. The energy spectrum of the quasiparticles is of dielectric type and characterized by an energy gap
between the valence and conductivity bands. Therefore the electron-photon interaction results in metal-
insulator transition in graphene. The stationary energy gap, induced by photons, and concomitant effects can be
observed for graphene exposed to a laser-generated circularly polarized electromagnetic wave.
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I. INTRODUCTION

Since the discovery of graphene!—a monolayer of carbon
atoms—its unique physical characteristics have aroused
enormous interest in the scientific community. Particularly,
the influence of electromagnetic field on electronic properties
of graphene is in focus of attention.> However all theoretical
models, elaborated to describe this influence, deal with
strong electromagnetic field in the framework of classical
electrodynamics. A theory capable of describing the strong
interaction between electrons in graphene and quantized
electromagnetic field was unknown up to the present. The
paper is aimed to fill partially this gap in the theory. It is
surprising that the problem of interaction between electrons
at the Fermi level of graphene and circularly polarized pho-
tons can be solved exactly in analytical form without the
need of any approximation and numerical calculations. This
is one of few exactly solvable problems in the theory of
photon-matter interaction that is not without interest to both
condensed-matter physics and quantum optics. Moreover,
since electrons in graphene behave as massless relativistic
fermions,'3* graphene can serve as a low-energy “proving
ground” for the relativistic physics.’ Therefore the obtained
solutions can also be useful to describe the interaction be-
tween relativistic particles and photons. Thus the solved
problem lies at the intersection of different excited fields of
modern physics that is what caused to write this paper.

II. DIRAC PROBLEM FOR ELECTRON-PHOTON SYSTEM
IN GRAPHENE

Generally, electron states in graphene near the Fermi en-
ergy are described by eight-component wave functions writ-
ten in a basis corresponding to two crystal sublattices of
graphene, two electron valleys, and two orientations of elec-
tron spin.> In what follows intervalley scattering processes
and spin effects will be beyond consideration, that reduces
the number of necessary wave-function components to two.
To describe the interaction between a plane monochromatic
circularly polarized electromagnetic wave and electrons in a
graphene, we shall be to use the Cartesian coordinate system
(x,y,z), where the axis z is perpendicular to the graphene
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fixed at z=0. Then near the point at the Fermi level, where
the valence and conductivity bands of graphene touch each
other (the Dirac point), the Hamiltonian of electrons interact-
ing with the electromagnetic field can be written for a single
valley and for a certain direction of electron spin in the form?

ﬂe=vpé'<ﬁ—zA>, (1)
C

where vy is Fermi velocity, p is operator of electron momen-
tum in the graphene plane, e is electron charge, and A is
vector potential of the electromagnetic field. As to the vector
operator &, its components are Pauli matrices written in the
basis of two orthogonal electron states arisen from two crys-
tal sublattices of graphene. Since the operator &, is diagonal,
these two states can be denoted by mutually opposite orien-
tations of the pseudospin along the z axis, s,=*1/2. Con-
sidering the problem within the standard quantum-field
approach,6 the classical field, A, should be replaced with the

field operator, A. Assuming the electromagnetic wave to be
clockwise polarized and propagating along the z axis, this
operator can be written as

A = \27hicH woV(e,d +e_a'), 2)

where w, is frequency of the electromagnetic wave, V is
volume of space with the field, e.=(e,*=ie,)/ V2 are polar-
ization vectors, e, are unit vectors directed along the x,y
axes, d and 4" are photon operators of annihilation and cre-
ation, respectively, written in the Schrodinger representation
(the representation of occupation numbers).® Then the com-
plete Hamiltonian of the electron-photon system, including
both the field energy, fwyd'a, and the electron Hamiltonian
(1) rewritten in the quantum-field form is given by

- o [Amhop
H=hawyd'a+vp0p—e (6,a+6.a", (3)
wOV

where 6. =(G,*id,)/2 are step-up and step-down operators
for the z projection of the pseudospin.
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The stationary solutions of the effective Dirac equation
with the Hamiltonian (3) have the form W(k)=e*y(k),
where k is wave vector in the graphene plane, r is radius
vector, and (k) is eigenstate of the Hamiltonian

4oy

o

Hy = hwyd'd + hvpok —e (6,4+6.4a"). (4)
At the Dirac point (k=0) the Hamiltonian (4) is formally
similar to the Hamiltonian of exactly solvable Jaynes-
Cummings model.” As a consequence, the effective Dirac
equation with the Hamiltonian (4) for k=0 can also be
solved exactly. To describe the electron-photon system at the
Dirac point, let us use the notation |sz,N> which indicates
that the electron is in one of two quantum states with the
pseudospin projections s,=*=1/2 and the electromagnetic
field is in quantum state with the photon occupation number
N=1,2,3,.... Then exact eigenstates of the Hamiltonian (4)
for k=0, ¥(0)=¢, .y, and ¥(0)=¢_;» y can be written as

Qi + (Oh)
e Q.-

+ g T“)O|1 1/2,N = 1), (5)

l@s103) = |+ 1/2,N)

where

Q. =VI6(N + 172 = 1/2)(mv5e*/hwyV) + wg,

energies of the electron-photon states [Eq. (5)], €,y and
£_1/p.n» are given by
ﬁ(l)() hQ+

84;1/2,N=Nﬁw0i7I 5 (6)

and subscript indexes in Egs. (5) and (6) indicate genesis of
these states: the state |¢- ), y) turns into the state |[+1/2,N)
when the electron-photon interaction vanishes (i.e., for e=0).
Expressions (5) and (6) can be easily verified by direct sub-
stitution into the effective Dirac equation ﬂknpil PN
=841 N¢+12y With the Hamiltonian (4) for k=0, keeping
in mind the trivial relations®3

G6+|F1/2,Ny=|+1/2,N), 6.|*1/2,N)=0,

A —
a'|=1/2,Ny=VN+1|=1/2,N + 1),

4|+ 1/2,Ny=\N|= 1/2,N - 1).

Let the photon occupation number of the electromagnetic
field (2) is fixed at N=N, by a field source. Then the
electron-photon states ¢_; 12N, and ¢, 12Ny originated from
electron states degenerated at the Dirac point, are separated
by the energy gap Eg=€_12N, " E+12.N, In what follows we
shall be to assume the electromagnetic wave to be classically
strong, that corresponds to macroscopically large photon oc-
cupation numbers (Ny>1). Then the gap can be written as

£y = W+ (hay) - fiay, (7)

where Wy=2vreE,/ w, is energy of electron rotational mo-
tion induced by the circularly polarized wave and E,
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=\4mNyhw,/V is classical amplitude of electric field of the
wave.

Let us proceed to solving the effective Dirac equation
with the Hamiltonian (4) near the Dirac point for wave vec-
tors k # 0. Since the obtained electron-photon states [Eq. (5)]
are eigenstates of the same Hamiltonian (4) for k=0, they
form complete basis of the considered electron-photon sys-
tem. Therefore true eigenstates of the Hamiltonian (4) for
k # 0 can be sought as an expansion

0

k)= >, [er12mK) i1 m+ o1 mK) @ 1nm].  (8)

m=1

Substituting expansion (8) into the effective Dirac equation

Hy (k) =&(K) (k) with the Hamiltonian (4), we arrive at the
system of recurrent algebraic equations for coefficients
c+1/2.m(K). This system can be easily solved in the special
case when the effective parameter of electron-field interac-
tion, a=W,/hw,, satisfies the condition «<<1. Seeking the
dispersion dependencies (k) and ¢, ,(k) for any k in the
principal order with respect to «, the system of recurrent
equations can be reduced to the two equations

8 .
(8 - Nohwo - _28')6'_1/2,]\]0 = hUF(kx + lky)c+l/2,NO’ (9)

&
<8 — Nohwy + _zg)cn/z,zvo =fwp(k,—iky)c iy, (10)

which can be solved exactly. Solving Egs. (9) and (10) by
conventional methods, we obtain two branches of the energy
spectrum, &(K), which can be written as

. PR v re—
sﬁo(k) =Nohwy * \r’(sg/Z)2 + (hvpk)?, (11)

where omitted k terms are ~o(«). As a result, eigenstates of
the Hamiltonian (3) are given by

\I';()(k) =eMey /2,N0(k)(P+1/2,N0 +c /2,N0(k)(P—1/2,N0]’
(12)

where superscript indices “*” denote solutions of Egs. (9)
and (10) corresponding to the two energy branches [Eq.
(11)]. As expected, for k=0 the obtained expressions (11)
and (12) coincide with the exact solutions (5) and (6).

III. ELECTRON-PHOTON QUASIPARTICLES IN
GRAPHENE AND THEIR PROPERTIES

The full energy of the electron-photon system (11) con-
sists of the field energy, Nofiw,, and the term

Ae(k) = = \(g,/2)* + (hvk)?, (13)

which is arisen from electron-photon interaction. As a con-
sequence, an electron interacting with circularly polarized
photons can be considered formally as a quasiparticle with
the energy spectrum [Eq. (13)]. From the viewpoint of clas-
sical electrodynamics, the circularly polarized electromag-
netic wave rotates the electron.’ Therefore the quasiparticle
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FIG. 1. (Color online) (a) Energy spectrum of quasiparticles in
graphene in the presence of circularly polarized irradiation (solid
line) and in the absence of one (dashed line); (b) scheme of quasi-
particle transitions in graphene irradiated at the frequency w.

is the mix of photon states and electron states corresponding
to this rotational motion of the electron. Certainly, a center of
trajectory of the rotating electron can move in the graphene
plane that corresponds to a translational motion of the qua-
siparticle as a whole. The translational motion is described in
Eq. (13) by the wave vector of quasiparticle, k. Since the
quasiparticle is rotating electron dressed by circularly polar-
ized photons, this wave vector differs from the wave vector
of free electron in graphene.

The energy spectrum of quasiparticles [Eq. (13)], sche-
matically pictured in Fig. 1(a), defines optical and transport
properties of graphene irradiated by circularly polarized
light. The distinctive feature of the spectrum [Eq. (13)] is the
energy gap [Eq. (7)] between quasiparticle states originated
from valence and conductivity bands of graphene. Formally,
the value of the photon-induced gap in the limit of large
radiation intensities, given by Eq. (7), is the same as the
value of dynamical gap induced at the Dirac point of
graphene by a classical circularly polarized electromagnetic
wave.!%!! However, there is a conceptual difference between
the stationary energy gap [Eq. (7)] arisen from quantum-field
theory and dynamical gaps'®'3 arisen in graphene from clas-
sical fields. Historically, the term “dynamical gap” is come
into the theory of graphene-field interaction'®!* from the
general theory'*!> developed to describe different quantum
systems exposed to time-dependent classical fields and de-
notes the gap in spectrum of Floquet quasienergies. Thus the
dynamical gap is not true gap in the density of states of
charge carriers. As it was specially stressed in Ref. 12, “since
it is time-dependent problem, one cannot measure the gap
directly from the density of states.” In contrast to the dy-
namical gap, the gap [Eq. (7)] is obtained from stationary
solutions of the time-independent Dirac problem for the
electron-photon system and is true gap in the density of
bound electron-photon states (charged quasiparticles). As a
consequence, the stationary gap [Eq. (7)] will be to manifest
itself directly in all phenomena sensitive to the density of
states of charge carriers. In other words, the incorporation of
such an additional physical factor as a quantum nature of
electromagnetic field into the theory of graphene-field inter-
action, presented in the given paper, allows to consider the
strong interacting electron-photon system in graphene as a
gas of noninteracting quasiparticles with density of states
defined by the energy spectrum [Eq. (13)]. Since the quasi-
particle concept is conventional approach of the modern
physics to describe quantum systems with a strong interac-
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tion, the developed theory is fruitful to predict and analyze
different unexplored phenomena in graphene irradiated by
light—particularly, physical effects discussed hereafter.

If another electromagnetic field with the frequency o is
applied to the considered electron-photon system, optical
transitions of quasiparticles between its valence and conduc-
tivity bands can be possible. It follows from the energy con-
servation law that the transitions are allowed for w= g,
where w,=¢,/f. Therefore the gap [Eq. (7)] results in the
threshold of absorption of an external field at the frequency
w=w,. Since the threshold frequency, w,, is controlled by the
field intensity, E,, this effect can be used as a basis for tun-
able detectors of electromagnetic radiation. The transition
rate at the threshold frequency is defined by the interband
dipole matrix element

. +2hw,
W OV (0))] = lelfiv,—2 M0y
[V, (0l Wy (0))] = el UFng(sg+ﬁwo) (o

where d is dipole moment operator and i=x,y. Besides op-
tical transitions induced by the external field, there is the
quasiparticle transition at the frequency w,

Wy, (k) — Wy (k). (15)

which is accompanied by one-photon absorption of the field
[Eq. (2)]. This transition, pictured in Fig. 1(b), needs a spe-
cial discussion since the field [Eq. (2)] is inherent in the
solved Dirac problem and cannot be considered as an exter-
nal field. It follows from Eq. (11) that for w, = w, there is the
wave vector, k', satisfying the condition sl_\,o(k’)zs;(,o_l(k’).
Therefore the transition [Eq. (15)] is allowed by the energy
conservation law for w,=w, and can take place at k=k’
without the assistance of external energy sources. However
the field [Eq. (2)] has been accounted exactly by the com-
plete Hamiltonian of the electron-photon system [Eq. (3)]
and cannot lead directly to transitions between different sta-
tionary states of the same Hamiltonian. To realize the transi-
tion [Eq. (15)], the eigenstates of the Hamiltonian (3),
Wy, (k) and \I,;/O—l(k)’ should be mixed by an external elastic
scatterer (for example, by a defect of graphene lattice). Using
Eq. (12), we can calculate the matrix element

(W5, 10|V, (), (16)

which defines the rate of transition [Eq. (15)] for any scat-
tering field U(r). In the absence of scatterers, when U(r)
=0 [or, generally, U(r)=const], the matrix element [Eq. (16)]
is zero and the transition is impossible. Thus the quasiparti-
cle transition [Eq. (15)] is scatterer-assisted process.

It is seen in Fig. 1(b) that excited quasiparticles, accom-
plishing a cascade of nonradiative thermalization transitions
after the transition [Eq. (15)], can create a population inver-
sion between the conductivity band and the valence band at
k=0. Since the interband dipole moment [Eq. (14)] is non-
zero that results in light emission from graphene at the
threshold frequency, w,, controlled by the field intensity, E.
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Therefore the scheme, pictured in Fig. 1(b), forms a physical
basis for creating tunable sources of electromagnetic radia-
tion. The proposed mechanisms for tunable detection and
generation of electromagnetic radiation are especially chal-
lenging for the terahertz (THz) frequency range. Indeed,
search for effective THz sources and detectors is one of most
excited problems of modern applied physics.'®!” Moreover,
the latest trend is the using of different nanostructures to fill
the THz gap.'®-2? Therefore the application of graphene for
THz devices fits well current tendencies in the graphene-
based quantum electronics?® and the nanophotonics as a
whole.

Formally, the energy spectrum [Eq. (13)] is of dielectric
type for any field intensity, E,. However the interband tran-
sition [Eq. (15)] leads to generation of free-charge carriers in
valence and conductivity bands for w,=w,. To turn
graphene into true insulator, we need to forbid the transition
[Eq. (15)] by the energy conservation law. This forbidding
corresponds to w,>> w. Therefore the metal-insulator transi-
tion in graphene is a threshold effect and occurs at the criti-
cal field intensity, E,=E,, satisfying the condition &,=%iw.
Using Eq. (7), we obtain

\3# wy

E.= .
¢ 2vp|e|

(17)

Being in the insulator state for Ey>E_, graphene has zero
conductivity for the temperature 7=0 and behaves as a semi-
conductor for T#0. Applying the conventional theory of
semiconductors®* to graphene for Ey>E, and T<g,, we can
write the total density of free charge carriers for a single
valley of graphene and for a certain direction of electron spin

in the form
m'T e
n=<ﬂ_ﬁ2>exp<— ﬁ), (18)

where m” is effective mass of quasiparticles, which defines
their energy spectrum,

Ae(k) = *+ g,/2 + A*k*/2m", (19)

for small quasiparticle wave vectors k. Considering k terms
in the Hamiltonian (4) as a perturbation and using the stan-
dard perturbation theory,® we can find the energy spectrum of
quasiparticles near their band edge as a k-power series ex-
pansion without assuming weakness of the field (the param-
eter of electron-field interaction, a=W,/fw, is allowed to
be not small). Obtaining terms ~k? in the spectrum, we ar-
rive at the exact expression for the effective mass

B 2e,(e, + 2hwp) (g, + hawg)?
B v%[(sg +2hw)’ + 82,]

3k

(20)

It should be noted that the energy spectrums of quasiparticles
[Egs. (13) and (19)] are mutually complementary: Eq. (13) is
applicable within a broad range of wave vectors but only for
small field intensities (e¢<<1) and Eq. (19) with the effective
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mass [Eq. (20)] is valid for any field intensities but only for
small wave vectors (fivgk/e,<1). As expected, Eqs. (13)
and (19) are equal for small field intensities and small wave
vectors.

IV. DISCUSSION AND CONCLUSIONS

Finalizing the paper, we have to estimate the effects dis-
cussed above. The distance between neighboring electron-
photon states [Eq. (6)] is characterized by the two energies,
fiwy and &,=fiw,. Therefore the destructive influence of scat-
tering processes on quasiparticles can be neglected if wy7
>1 and wg7'>1, where 7~107"2c is mean free time of
charge carriers in graphene.”> Thus the developed concept of
quasiparticles is applicable if the field (2) is both high fre-
quency and strong. Particularly, such a field can be created
by using lasers. Let the wave is generated by a laser with the
wavelength N and focused into a narrow beam with the di-
ameter d=~N\. Then the wave amplitude is E,=~4yP/c\?,
where P is output power of the laser. Within this scheme the
condition of metal-insulator transition [Eq. (17)] can be sat-
isfied, for instance, by using an ordinary low-power CO,
laser with A=10.6 um and P =76 Watts. In this case the gap
[Eq. (7)] is £,~117 meV that allows to observe the metal-
insulator transition at room temperatures. As to the effect of
THz emission from irradiated graphene, it takes place for
substantially smaller powers P~ 1072 W.

As it follows from the estimations given above, the con-
sidered phenomena can be observable in graphene under a
low-power irradiation. This is surprising since a high-power
laser radiation is usually necessary to observe effects of
strong electron-photon coupling.?>? Let us give simple
physical reasons to clarify this unexpected result. From the
quasiclassical viewpoint, the characteristic energy of electron
coupling to circularly polarized electromagnetic wave is the
kinetic energy of electron rotational motion induced by the
wave. In the case of an usual condensed matter with para-
bolic electron energy spectrum, &(k)=#%k?/2m*, this kinetic
energy is Wy=(eEy/ wy)?/2m*. As to graphene, due to its
linear electron energy spectrum, &(k)= *fiv|k|, the energy
of the electron rotational motion induced by the wave is
Wo=2vreEy/ wy. Since we have Wy/Wy>1 for weak fields
E,, the electron coupling to a low-power circularly polarized
electromagnetic radiation is substantially stronger in
graphene than in other condensed matters. The observability
of the discussed effects for a low-power laser pumping is
crucial from experimental viewpoint since high-power lasers
fluidize a crystal lattice and are inapplicable to condensed-
matter experiments. Thus graphene gives an unique opportu-
nity to observe effects of strong electron-photon coupling,
which cannot be observed in other condensed matters. As a
result, the presented theory opens a significant new area of
graphene-related research, where condensed-matter physics
and quantum optics meet.

We have demonstrated that the Dirac electron spectrum of
graphene leads to the strong electron interaction with circu-
larly polarized photons for low light intensities. This results
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in bound electron-photon states (charged quasiparticles)
which should be considered as a substantially new kind of
field-matter coupling. The energy spectrum of the quasipar-
ticles is of dielectric type that leads to the photon-induced
metal-insulator transition. From applied viewpoint, this ef-
fect can be used as a basis for creating tunable optoelectronic
devices.
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